If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.79t^2-26.9t-26.9=0
a = 1.79; b = -26.9; c = -26.9;
Δ = b2-4ac
Δ = -26.92-4·1.79·(-26.9)
Δ = 916.214
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26.9)-\sqrt{916.214}}{2*1.79}=\frac{26.9-\sqrt{916.214}}{3.58} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26.9)+\sqrt{916.214}}{2*1.79}=\frac{26.9+\sqrt{916.214}}{3.58} $
| 0.025=-1.50x+1/x | | -3n+6n=8(-6+6n)-(1-4n) | | 50=2x3x-x- | | x^2-4x+58=0 | | (6a-1)/7=1 | | 5÷4x+1÷2=2x-1÷2 | | L=1/2(m+1) | | 6+0.5y=-2(3-1/4y) | | 6=x/5-x/8 | | w2+10w+-100=0 | | 55r+0.25+45r=0.35 | | 2(a-4)=4a-2a+4) | | 9z-14=125 | | 2(-x+3)=x+18 | | 9(x+4)+8=-10 | | 30=5bb= | | (x-6)/4+10=30 | | -1=t+–19 | | 10x-3=8x-89 | | 3x^2=9-9x | | -1=t+(–19) | | (2x+1°)+(9x-10°)=90° | | b/13-9b/13=56/13 | | (10-5)(y+6)=0 | | 2^2+15x−27=0 | | c/6+180=6B | | 12(4-y)=67 | | 2x2+15x−27=0 | | -10+z-1=7-5 | | 9z^-25=0 | | (X-5)(y+6)=0 | | 98+3x+9=11x+19 |